If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-36x-80=0
a = 4; b = -36; c = -80;
Δ = b2-4ac
Δ = -362-4·4·(-80)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{161}}{2*4}=\frac{36-4\sqrt{161}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{161}}{2*4}=\frac{36+4\sqrt{161}}{8} $
| 4x+9x=120 | | 5+4x-4=2x+5 | | X+2+2x=4x-2 | | 4(2x-5)=29-5(x-3) | | 2x+90=7x+10 | | (4y+1)+(3y+32)=180 | | 4x-24.4=-2 | | 1/x=7.95 | | 5(x+2)/4=6x-5 | | 3x=25-2x= | | 3(3-2)=2x-11 | | .8=1-(x/25) | | 3x2+12x-1440=0 | | 2÷3=150÷x | | 20+2x=5x-4 | | 5(x-2)/4=6x-5 | | 5-19=c/57 | | −12=4n | | 15+x+16=5x-13 | | 3(×-1)-2(x-3)=10 | | x/−2(x+3)=−2(x+1)−4 | | 9x2+117x-1024=0 | | X+6+18x-12=13 | | y-9=-22 | | (x-2)+4=8 | | C+10+3c=2 | | (x/8)+6=4 | | A+50=2•a | | R/3-3=2r/5+16 | | 9x2-117x-1024=0 | | 2(3x+5)-2x-2=0 | | 3x-6+x+1=3x+5 |